Isothermal Vapor-Liquid Equilibria for Benzene + Cyclohexane + 1-Propanol and for Three Constituent Binary Systems

Kiyofumi Kurihara, Masanori Uchiyama, and Kazuo Kojima*

Department of Industrial Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101, Japan

Isothermal vapor-liquid equilibria were measured for the ternary system of benzene + cyclohexane + 1-propanol and its constituent binary systems of benzene + cyclohexane, cyclohexane + 1-propanol, and benzene + 1-propanol at 323.15 and 333.15 K, using the apparatus proposed in a previous study. The experimental binary data were correlated using the NRTL equation. The ternary system was predicted using the binary NRTL parameters. The average absolute percent deviations between the predicted and experimental ternary total pressures are 0.5% at 323.15 K and 0.4% at 333.15 K.

Introduction

The availability of azeotropic data for multicomponent systems is important for the design and operation of separation processes. This paper discusses the vaporliquid equilibria (VLE) and azeotropic data that were measured for the ternary system of benzene + cyclohexane + 1-propanol and its constituent binary systems of benzene + cyclohexane, cyclohexane + 1-propanol, and benzene + 1-propanol at 323.15 and 333.15 K. All these ternary and binary systems form a maximum pressure azeotrope, and each azeotropic point was determined on the basis of the experimental VLE data. For the ternary system, three data sets of isobaric VLE at 101.3 kPa are available in the literature (Morachevsky and Ch'eng, 1961; Arce et al., 1986; Hiaki et al., 1986).

Experimental Section

Apparatus and Procedure. In this VLE measurement, a modified Rogalski-Malanowski equilibrium still combined with an isothermal VLE measuring apparatus (Kurihara et al., 1995) was used. The apparatus contained an ebulliometer for the reference substance (water) in addition to this equilibrium still for samples.

The equilibrium temperature was measured with a calibrated platinum resistance thermometer with an accuracy of ± 0.01 K. The pressure in the still was determined by measuring the bubble point of water and referring to the vapor pressure data of water (Bridgeman and Aldrich, 1964). The accuracy was estimated to be ± 0.03 kPa.

Analysis. Vapor and liquid samples were analyzed with a Shimadzu gas chromatograph type GC-8AIT equipped with a thermal conductivity cell. Chromosorb W was used as the column packing, and helium, as the carrier gas. The compositions were determined by the relative area method with an accuracy of ± 0.001 mole fraction.

Materials. Benzene, cyclohexane, and 1-propanol were special grade pure reagents (Wako Pure Chemical Industry, Ltd.) and were used after removing any traces of water with molecular sieves. The purity of the materials was checked by gas chromatography and found to be better than 99.9 mol %. In Table 1, some measured properties of the purified reagents are shown along with the literature values.

Experimental Results

Binary Systems. The VLE data at 323.15 and 333.15 K for the three binary systems are shown in Tables 2–4

Table 1. Densities, ρ , and Normal Boiling Points, $T_{\rm b}$, of the Components

	ρ (298.15	K)/g cm $^{-3}$	$T_{\rm b}/{ m K}$			
component	exptl	lit. ^a	exptl	lit. ^a		
benzene	0.8736	0.873 60	353.20	353.244		
cyclohexane	0.7739	0.77389	353.83	353.880		
1-propanol	0.7996	0.799 60	370.17	370.301		

^a Riddick et al., 1986.

Figure 1. Pressure—composition diagram for the binary systems. (a) Benzene (1) + cyclohexane (2): (Δ, \blacktriangle) literature (Morachevsky and Zharov, 1963) x_1 and y_1 at 323.15 K; $(\nabla, \blacktriangledown)$ literature (Boublik, 1963) x_1 and y_1 at 333.15 K. (b) Cyclohexane (1) + 1-propanol (2). (c) Benzene (1) + 1-propanol (2): (Δ, \blacktriangle) literature (Arce et al., 1977) x_1 and y_1 at 323.15 K. $(\nabla, \blacktriangledown)$ literature (Udovenko and Mazanko, 1972) x_1 and y_1 at 333.15 K. (a), (b), (c): (\Box, \blacksquare) experimental x_1 and y_1 at 323.15 K; (\bigcirc, \bigcirc) experimental x_1 and y_1 at 333.15 K; (\frown, \bigcirc) experimental x_1 and y_1 at 333.15 K; (\frown) NRTL equation.

and Figures 1 and 2. The activity coefficients, γ_{i} in the tables and figures were evaluated by the following equation:

$$\varphi_i P y_i = x_i \gamma_i P_i^{\rm S} \varphi_i^{\rm S} \exp[\nu_i^{\rm L} (P - P_i^{\rm S})/RT]$$
(1)

where φ_i and $\varphi_i^{\rm S}$ are the fugacity coefficients of component *i* in the mixture and the pure vapor, respectively. They were calculated using the second virial coefficients obtained

S0021-9568(96)00247-6 CCC: \$14.00 © 1997 American Chemical Society

Table 2. Isothermal Vapor-Liquid Equilibrium Data, Vapor Pressure, *P*, Liquid Phase, x_1 , and Vapor Phase, y_1 , Mole Fractions, and Activity Coefficients, γ_b , for Benzene (1) + Cyclohexane (2)

D/I D

Table 3. Isothe	rmal Vapor–Liquid Equilibrium Data,
Vapor Pressure	e, P, Liquid Phase, x ₁ , and Vapor Phase, y ₁
Mole Fractions	, and Activity Coefficients, γ_{i} , for
Cyclohexane (1) + 1-Propanol (2)

Р/кРа	X_1	y_1	<i>γ</i> 1	γ_2	Р/кРа	<i>X</i> ₁	
		323.15 K					32
36.88	0.034	0.048	1.440	1.002	27.92	0.122	
37.48	0.074	0.101	1.414	1.003	30.85	0.166	
37.94	0.107	0.142	1.391	1.005	33.92	0.221	
38.31	0.138	0.177	1.357	1.008	38.08	0.329	
38.42	0.147	0.187	1.350	1.009	38.81	0.366	
39.05	0.201	0.245	1.314	1.016	38.90	0.396	
39.36	0.239	0.282	1.282	1.023	40.51	0.508	
39.57	0.274	0.314	1.251	1.030	41.15	0.557	
39.67	0.287	0.326	1.243	1.033	41.14	0.576	
39.99	0.335	0.366	1.205	1.050	41.28	0.599	
40.03	0.347	0.378	1.203	1.050	41.51	0.636	
39.96	0.348	0.378	1.197	1.050	41.75	0.687	
40.09	0.365	0.393	1.191	1.055	41.78	0.755	
40.21	0.404	0.426	1.169	1.066	41.83	0.760	
40.27	0.422	0.441	1.161	1.072	41.87	0.765	
40.27	0.434	0.452	1.157	1.074	41.96	0.783	
40.31	0.448	0.463	1.149	1.080	41.99	0.790	
40.40	0.463	0.474	1.140	1.090	42.02	0.795	
40.32	0.477	0.400	1.100	1.091	42.07	0.810	
40.33	0.495	0.497	1.121	1.102	42.00	0.829	
40.33	0.497	0.500	1.119	1.104	41.99	0.047	
40.33	0.509	0.510	1.115	1.109	41.07	0.805	
40.33	0.524	0.522	1.106	1.110	41.02	0.870	
40.33	0.551	0.527	1.104	1.120	41.77	0.873	
40.31	0.500	0.550	1.052	1.155	41.33	0.902	
40.27	0.657	0.626	1.070	1 204	41.50	0.510	
39.95	0.690	0.653	1.000	1 232			33
39.55	0.000	0.000	1.012	1 273	33.33	0.061	
39.22	0.795	0.751	1.001	1.313	34.85	0.070	
39.02	0.812	0.768	1.018	1.328	40.68	0.114	
38.68	0.844	0.801	1.013	1.361	45.25	0.155	
38.05	0.897	0.858	1.004	1.448	50.21	0.222	
37.81	0.914	0.879	1.003	1.469	53.79	0.288	
37.47	0.934	0.904	1.001	1.505	56.65	0.368	
		999 15 V			57.11	0.380	
52 56	0.070	0.005	1 202	1 002	57.92	0.398	
53.50	0.070	0.095	1 380	1.003	58 36	0.418	
54 10	0.070	0.102	1 361	1.004	58.65	0.437	
54.10	0.102	0.154	1 358	1.004	58.95	0.401	
55 48	0.120	0.221	1 318	1.000	59.53	0.511	
55 61	0.202	0 243	1 280	1.011	59.80	0.521	
56.19	0.234	0.275	1.263	1.023	60.06	0.556	
56.28	0.270	0.309	1.231	1.024	60.70	0.618	
56.93	0.336	0.367	1.188	1.043	60.85	0.670	
57.02	0.351	0.380	1.180	1.047	61.08	0.716	
57.03	0.374	0.401	1.168	1.049	61.10	0.741	
57.44	0.440	0.456	1.137	1.073	61.13	0.755	
57.46	0.450	0.465	1.134	1.074	61.16	0.768	
57.49	0.461	0.473	1.127	1.081	61.16	0.778	
57.52	0.471	0.481	1.122	1.085	61.17	0.787	
57.56	0.478	0.487	1.120	1.087	61.17	0.807	
57.59	0.488	0.495	1.116	1.092	61.16	0.817	
57.60	0.499	0.503	1.109	1.098	61.14	0.828	
57.61	0.509	0.511	1.104	1.103	61.09	0.848	
57.62	0.518	0.519	1.102	1.105	60.21	0.922	
57.62	0.528	0.527	1.098	1.110	58.74	0.960	
57.61	0.533	0.531	1.096	1.112	1 .1 75	,	.1
57.60	0.538	0.535	1.094	1.115	by the T	sonopoulos	meth
57.59	0.547	0.542	1.090	1.119	binary co	nstants in tl	ne Ts
57.57	0.556	0.549	1.085	1.124	0.017 for t	the benzene	+ cy
57.43	0.602	0.587	1.069	1.146	the cyclob	exane + 1-r	bropa
57.13	0.673	0.644	1.044	1.196	systems	The value fo	r the
56.89	0.709	0.677	1.037	1.215	are these	recommond	ad by
56.42	0.764	0.727	1.025	1.256			≈u DY
55.13	0.788	0.749	1.019	1.2/9	+ cyclone	xalle system	, uie
53.09	U.828	0.790	1.015	1.310	from the s	econd virial	coeff
54.90 54.49	0.870	0.030	1.009	1.000	(1955). T	he liquid mo	olar v
54.43 54 20	0.090	0.000	1.000	1.349	the modif	ied Rackett (equa
54.3U 57 10	0.903	0.073	1.003	1.3/1	The vano	r pressures	of th
52 50	0.917	0.009	1.003	1.395	calculated	$\int \mathbf{f} \mathbf{r} \mathbf{o} \mathbf{r} \mathbf{r} \mathbf{h} \mathbf{r} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} h$	ntoi
00.00	0.344	0.322	1.001	1.440	canulated	nom die A	

<i>P</i> /kPa	<i>X</i> 1	y_1	γ1	γ_2
		323.15 K		
27.92	0.122	0.614	3.907	1.001
30.85	0.166	0.661	3.408	1.022
33.92	0.221	0.704	2.991	1.050
38.08	0.329	0.757	2.418	1.124
38.81	0.366	0.766	2.241	1.167
38.90	0.396	0.766	2.076	1.228
40.51	0.508	0.788	1.731	1.423
41.15	0.557	0.794	1.616	1.560
41.14	0.576	0.793	1.560	1.637
41.28	0.599	0.795	1.509	1.720
41.51	0.636	0.801	1.439	1.850
41.75	0.687	0.808	1.352	2.088
41.78	0.755	0.815	1.241	2.573
41.83	0.760	0.818	1.239	2.587
41.87	0.765	0.816	1.229	2.674
41.96	0.783	0.819	1.208	2.855
41.99	0.790	0.821	1.201	2.920
42.02	0.795	0.818	1.190	3.043
42.07	0.810	0.821	1.173	3.233
42.06	0.829	0.824	1.150	3.532
41.99	0.847	0.827	1.128	3.874
41.87	0.865	0.832	1.108	4.253
41.82	0.870	0.831	1.099	4.437
41.77	0.873	0.834	1.098	4.457
41.55	0.902	0.830	1.052	5.883
41.38	0.918	0.835	1.036	6.798
		333.15 K		
33.33	0.061	0.419	4.482	1.008
34.85	0.070	0.450	4.381	1.007
40.68	0.114	0.541	3.759	1.029
45.25	0.155	0.602	3.411	1.039
50.21	0.222	0.661	2.892	1.067
53.79	0.288	0.694	2.502	1.127
56.65	0.368	0.723	2.144	1.210
57.11	0.386	0.725	2.066	1.246
57.52	0.398	0.730	2.031	1.257
57.88	0.418	0.733	1.954	1.294
58.36	0.437	0.739	1.899	1.318
58.65	0.461	0.745	1.823	1.352
58.95	0.478	0.748	1.774	1.387
59.53	0.511	0.754	1.689	1.460
59.80	0.521	0.755	1.666	1.491
60.06	0.556	0.760	1.578	1.583
60.70	0.618	0.769	1.451	1.790
00.85	0.070	0.785	1.301	1.979
01.08 61.10	0.710	0.785	1.280	2.200
01.10 61.12	0.741	0.780	1.240	2.403
61 16	0.755	0.789	1.227	2.509
61.10	0.708	0.791	1.209	2.009
61 17	0.7787	0.791	1.134	۵.010 £
61 17	0.707	0.792	1.102	2 196
61 16	0.807	0.790	1 148	3 280
61.14	0.828	0.801	1.136	3.454
61.09	0.848	0.806	1.115	3.808
60.21	0.922	0.832	1.043	6,345
58.74	0.960	0.862	1.013	9,935
00.71	0.000	0.00%	1.010	0.000

by the Tsonopoulos method (Tsonopoulos, 1974). The binary constants in the Tsonopoulos method were set as 0.017 for the benzene + cyclohexane system and 0.150 for the cyclohexane + 1-propanol and benzene + 1-propanol systems. The value for the systems containing 1-propanol are those recommended by Tsonopoulos. For the benzene + cyclohexane system, the binary constant is determined from the second virial coefficients reported by Waelbroeck (1955). The liquid molar volumes, v_i^L , were calculated by the modified Rackett equation (Spencer and Adler, 1978). The vapor pressures of the pure components, P_i^S , were calculated from the Antoine equation constants given in Table 5. The Antoine constants were determined from the

Table 4. Isothermal Vapor–Liquid Equilibrium Data, Vapor Pressure, *P*, Liquid Phase, x_1 , and Vapor Phase, y_1 , Mole Fractions, and Activity Coefficients, γ_i , for Benzene (1) + 1-Propanol (2)

<i>P</i> /kPa	<i>X</i> 1	y_1	γ1	<i>Y</i> 2
		323.15 K		
22.02	0.101	0.493	3.002	1.014
23.58	0.119	0.533	2.946	1.021
28.76	0.211	0.647	2.451	1.050
30.54	0.250	0.682	2.312	1.056
32.23	0.297	0.706	2.124	1.099
34.60	0.380	0.744	1.875	1.165
34.90	0.399	0.746	1.806	1.203
36.23	0.455	0.767	1.689	1.263
36.90	0.518	0.779	1.534	1.380
37.64	0.570	0.791	1.443	1.492
37.60	0.592	0.796	1.397	1.534
30.23	0.000	0.808	1.302	1.730
30.94	0.000	0.810	1.273	1.074
39.00	0.704	0.832	1.174	2.271
39.15	0.803	0.844	1 1 1 6	2.303
39 19	0.828	0.845	1 104	2.886
39.10	0.832	0.849	1.101	2.872
39.25	0.843	0.851	1.093	3.044
39.27	0.849	0.853	1.089	3.125
39.24	0.856	0.856	1.083	3.208
39.25	0.867	0.860	1.074	3.378
39.22	0.877	0.864	1.066	3.546
39.18	0.885	0.868	1.060	3.678
39.14	0.893	0.871	1.053	3.860
38.64	0.936	0.893	1.017	5.291
		333.15 K		
28.61	0.057	0.321	3.138	1.009
36.16	0.131	0.493	2.636	1.031
37.59	0.144	0.523	2.641	1.024
43.03	0.219	0.609	2.307	1.052
44.43	0.242	0.027	2.217	1.007
43.52	0.270	0.666	1 977	1 109
50.56	0.382	0.706	1.793	1.174
50.91	0.392	0.713	1.776	1.173
52.41	0.448	0.730	1.637	1.251
52.75	0.457	0.734	1.624	1.261
53.53	0.510	0.746	1.500	1.354
54.71	0.567	0.761	1.405	1.474
54.96	0.584	0.766	1.380	1.509
55.19	0.603	0.770	1.348	1.561
55.46	0.623	0.775	1.320	1.016
56 22	0.050	0.762	1.273	1.720
56 55	0.057	0.809	1 143	2 947
56.61	0.783	0.814	1.125	2.373
56.68	0.803	0.820	1.106	2.533
56.70	0.821	0.828	1.093	2.666
56.70	0.843	0.837	1.076	2.882
56.67	0.858	0.843	1.064	3.068
56.62	0.874	0.849	1.051	3.324
56.52	0.889	0.857	1.041	3.568
56.37	0.904	0.866	1.032	3.858
50.28	0.909	0.870	1.029	3.943
56 12	0.913	0.073	1.027	4.U2/ / 1/Q
55 96	0.919	0.878	1.025	4.140
55.91	0.932	0.889	1.019	4.481
55.84	0.934	0.890	1.017	4.569
55.43	0.950	0.906	1.010	5.121

vapor pressure data of the pure components measured in this work. The average absolute percent deviations between the values calculated by the Antoine equation and the experimental values are less than about 0.1% in all cases.

The experimental VLE data were examined using the thermodynamic consistency test (Kojima et al., 1990) which was proposed in our previous paper. The results indicate that the reported data for the three systems are thermodynamically consistent.

Figure 2. Activity coefficient—liquid composition diagram for the binary systems (a) benzene (1) + cyclohexane (2) at 323.15 K, (b) benzene (1) + cyclohexane (2) at 333.15 K, (c) cyclohexane (1) + 1-propanol (2) at 323.15 K, (d) cyclohexane (1) + 1-propanol (2) at 333.15 K, (e) benzene (1) + 1-propanol (2) at 323.15 K, and (f) benzene (1) + 1-propanol (2) at 333.15 K: (\bullet) experimental; (\Box) Morachevsky and Zharov (1963); (\triangle) Boublik (1963); (\bigtriangledown) Arce et al. (1977); (\diamond) Udovenko and Mazanko (1972); (-) NRTL equation.

Table 5. Antoine Constants of Components^a

component	Α	В	С
benzene	6.082 00	1237.868	$-49.479 \\ -37.218 \\ -69.091$
cyclohexane	6.172 14	1318.971	
1-propanol	6.958 81	1492.106	

^a log(P/kPa) = A - B/[(T/K) + C].

Figure 3. Vapor–liquid equilibrium tie lines (tails of arrows represent liquid-phase mole fractions x_1 and x_2 , and heads of arrows represent vapor-phase mole fractions y_1 and y_2) for benzene (1) + cyclohexane (2) + 1-propanol (3) at 323.15 K: (–) this work; (- -) NRTL equation; (•) azeotropic point.

For the benzene + cyclohexane and benzene + 1-propanol systems at the temperatures investigated in this paper, there are four data sets, which contain pressure, liquid composition, and vapor composition, available in the literature. However, these data are not consistent with our proposed test except for the data reported by Boublik (1963) for the benzene + cyclohexane system. VLE data for the cyclohexane + 1-propanol system at 323.15 and 333.15 K are not available in the literature. Figures 1 and 2 shows the comparisons of all literature VLE data and our results.

Table 6. Isothermal Vapor–Liquid Equilibrium Data, Vapor Pressure, P, Liquid Phase, x_i , and Vapor Phase, y_i , Mole Fractions, and Activity Coefficients, γ_i , for Benzene (1) + Cyclohexane (2) + 1-Propanol (3)

<i>P</i> /kPa	<i>X</i> ₁	<i>X</i> 2	y_1	y_2	γ1	<i>Y</i> 2	γ3	<i>P</i> /kPa	<i>X</i> 1	<i>X</i> 2	y_1	y_2	γ1	γ_2	γ3
							323.	15 K							
39.47	0.040	0.358	0.076	0.695	2.073	2.113	1.223	36.12	0.363	0.036	0.657	0.100	1.808	2.776	1.191
31.86	0.050	0.139	0.151	0.529	2.671	3.362	1.025	43.38	0.363	0.363	0.394	0.443	1.297	1.456	2.104
30.80	0.062	0.114	0.197	0.469	2./18	3.516	1.018	43.76	0.377	0.527	0.366	0.503	1.170	1.148	4.876
42.52	0.089	0.815	0.113	0.734	2 303	2 9/1	1 059	43.79	0.382	0.324	0.371	0.301	1.171	1.131	2 037
34 92	0.000	0.103	0.251	0.433	2.303	2 993	1.035	44 00	0.389	0.351	0.388	0.410	1.302	1 255	3 229
32.67	0.113	0.104	0.311	0.385	2.494	3.352	1.034	43.74	0.397	0.512	0.379	0.492	1.150	1.156	5.064
31.84	0.117	0.089	0.334	0.349	2.522	3.463	1.036	43.91	0.399	0.439	0.397	0.460	1.203	1.265	3.163
30.17	0.129	0.063	0.392	0.270	2.546	3.590	1.029	42.99	0.403	0.297	0.443	0.389	1.302	1.550	1.963
42.44	0.143	0.463	0.191	0.620	1.564	1.564	1.659	43.70	0.416	0.494	0.395	0.477	1.143	1.160	5.076
43.17	0.145	0.592	0.183	0.649	1.502	1.302	2.249	43.74	0.424	0.491	0.402	0.473	1.142	1.158	5.254
42.98	0.147	0.766	0.178	0.679	1.435	1.048	5.769	42.70	0.425	0.263	0.472	0.358	1.307	1.600	1.897
42.77	0.190	0.436	0.249	0.567	1.546	1.530	1.715	43.80	0.426	0.377	0.428	0.420	1.212	1.342	2.757
40.90	0.198	0.200	0.312	0.480	1.779	2.034	1.295	43.00	0.443	0.473	0.418	0.401	1.133	1.170	5.140 4.614
39 34	0.200	0.003	0.232	0.025	1.333	2 354	1 211	43.73	0.432	0.452	0.427	0.445	1.130	1.134	4.014
43.00	0.240	0.406	0.293	0.529	1.447	1.541	1.762	43.52	0.486	0.444	0.445	0.438	1.097	1.181	5.944
32.39	0.247	0.027	0.608	0.102	2.210	3.393	1.055	43.63	0.498	0.393	0.465	0.405	1.122	1.236	4.249
43.73	0.251	0.497	0.286	0.550	1.373	1.331	2.320	42.70	0.522	0.233	0.535	0.305	1.206	1.539	2.275
37.40	0.256	0.102	0.492	0.277	1.987	2.806	1.097	43.54	0.523	0.361	0.487	0.384	1.116	1.274	3.954
43.10	0.282	0.382	0.337	0.488	1.420	1.515	1.830	42.93	0.560	0.252	0.543	0.308	1.147	1.444	2.776
43.92	0.296	0.557	0.306	0.547	1.251	1.186	3.584	43.22	0.577	0.293	0.536	0.331	1.106	1.343	3.611
44.00	0.309	0.539	0.318	0.536	1.247	1.203	3.448	42.56	0.590	0.212	0.577	0.273	1.147	1.509	2.631
43.52	0.310	0.617	0.312	0.502	1.207	1.090	0.130	41.54	0.648	0.134	0.001	0.191	1.150	1.032	2.457
44.02	0.319	0.525	0.329	0.520	1.250	2 454	3.339 1.993	39.04 10.89	0.055	0.050	0.733	0.069	1.234	1.957	1.940
43 18	0.325	0.358	0.373	0.203	1.755	1 507	1.223	42.07	0.696	0.055	0.000	0.143	1.134	1 311	6 057
43.81	0.329	0.572	0.330	0.539	1.210	1.135	4.734	41.31	0.771	0.163	0.694	0.203	1.025	1.417	5.275
44.02	0.333	0.508	0.340	0.513	1.238	1.222	3.320	40.51	0.827	0.100	0.753	0.138	1.017	1.541	4.950
43.84	0.349	0.435	0.365	0.478	1.263	1.325	2.599	39.88	0.867	0.059	0.799	0.086	1.013	1.603	5.071
37.81	0.354	0.069	0.600	0.176	1.771	2.665	1.197	39.43	0.888	0.034	0.832	0.052	1.019	1.664	4.799
43.81	0.355	0.553	0.349	0.527	1.186	1.148	4.824								
							333.	15 K							
57.98	0.188	0.223	0.306	0.441	1.805	2.208	1.214	63.30	0.314	0.522	0.314	0.518	1.207	1.205	3.167
58.15	0.322	0.151	0.468	0.293	1.616	2.173	1.286	62.76	0.261	0.437	0.292	0.509	1.340	1.403	2.017
50.05	0.244	0.130	0.421	0.312	1.030	2.402	2 700	61 17	0.195	0.380	0.212	0.000	1.330	1.240	2.034
59 57	0.654	0.117	0.664	0.153	1 1 5 4	1.507	2 219	58 91	0.270	0.203	0.333	0.427	1.434	1 701	2 673
57.68	0.502	0.076	0.637	0.142	1.399	2.077	1.474	62.63	0.560	0.344	0.506	0.360	1.078	1.258	4.278
56.87	0.051	0.314	0.094	0.633	2.008	2.208	1.191	62.98	0.515	0.316	0.489	0.353	1.140	1.350	2.877
60.94	0.106	0.839	0.119	0.752	1.306	1.048	7.004	62.65	0.478	0.288	0.474	0.344	1.185	1.437	2.378
62.09	0.097	0.769	0.110	0.715	1.344	1.108	3.962	61.92	0.458	0.498	0.425	0.466	1.095	1.112	7.518
62.16	0.089	0.705	0.104	0.702	1.387	1.188	2.857	63.41	0.415	0.449	0.395	0.451	1.150	1.222	3.509
61.76	0.075	0.604	0.096	0.692	1.510	1.358	1.989	63.31	0.365	0.394	0.378	0.446	1.250	1.375	2.257
30.78	0.033	0.031	0.108	0.205	3.047	3.993	1.009	39.53	0.010	0.100	0.030	0.495	2.753	3.813	1.017
01.44 61 73	0.191	0.303	0.255	0.521	1.554	1.005	1.524	63 16	0.364	0.595	0.301	0.547	1.140	1.072	9.317
58 71	0.030	0.230	0.535	0.208	1 486	1.992	1 387	63 48	0.316	0.343	0.322	0.513	1.103	1 255	2 765
49.94	0.306	0.020	0.628	0.062	1.968	2.998	1.120	63.20	0.291	0.452	0.313	0.500	1.296	1.341	2.244
57.19	0.848	0.017	0.823	0.025	1.060	1.621	3.153	49.98	0.155	0.099	0.386	0.347	2.389	3.388	0.874
57.17	0.796	0.015	0.802	0.024	1.100	1.763	2.575	62.51	0.236	0.688	0.242	0.617	1.223	1.075	5.674
63.03	0.471	0.452	0.436	0.439	1.112	1.174	5.009	63.23	0.213	0.625	0.226	0.601	1.280	1.166	3.297
63.42	0.395	0.378	0.400	0.424	1.224	1.365	2.400	63.54	0.294	0.579	0.296	0.548	1.220	1.153	3.814
63.56	0.229	0.520	0.251	0.559	1.329	1.310	2.347	63.65	0.271	0.534	0.285	0.543	1.276	1.241	2.741
33.U/ 53.69	0.347	0.014	0.733	0.031	1.412	2.354	1.445	62.29 62.00	0.172	0.745	0.186	0.655	1.285	1.051	5.834 3 105
57.00	0.301	0.031	0.330	0.044	1.000	1 608	3 963	62 31	0.135	0.546	0.170	0.047	1.334	1.172	1 930
59.05	0.783	0.180	0.719	0.209	1.034	1.318	5.647	51.10	0.074	0.153	0.188	0.490	2.494	3.165	1.038

_

Ternary System. Table 6 and Figures 3 and 4 give the experimental VLE data for the ternary system of benzene + cyclohexane + 1-propanol at 323.15 and 333.15 K. The tails of the solid arrows in Figures 3 and 4 represent experimental liquid compositions, and the heads of the arrows show experimental vapor compositions on the same tie line.

Azeotropic Data. The binary maximum pressure azeotropic points at each temperature were determined from the experimental VLE data using a graphical technique (Hiaki et al., 1986). The determination of the ternary maximum pressure azeotropic point was also performed by means of modifying the program of Hiaki et al. (1986) for isobaric data. The evaluated binary and ternary azeotropic compositions and pressures are shown in Table 7 and are compared with some literature values in Figures 5 and 6. Table 7. Azeotropic Composition $x_{f(az)}$ in Mole Fraction and Pressure $P_{(az)}$ for the Three Binary Systems and the Ternary System

<i>T</i> /K	<i>X</i> _{1(az)}	X2(az)	P _(az) /kPa
	Benzene (1) +	Cyclohexane (2	2)
323.15	0.513	0.487	40.36
333.15	0.522	0.478	57.62
	Cyclohexane (1)	+ 1-Propanol	(2)
323.15	0.822	0.178	42.06
333.15	0.794	0.206	61.18
	Benzene (1) +	- 1-Propanol (2))
323.15	0.855	0.145	39.27
333.15	0.832	0.168	56.70
Benze	ene (1) + Cyclohez	xane(2) + 1-Pr	opanol (3)
323.15	0.354	0.505	44.03
333.15	0.325	0.508	63.77

Table 8. Parameters and Deviations between the Calculated and Experimental Vapor-Phase Mole Fractions, Δy_i , and Pressures, ΔP , for the NRTL Equation^a

		-								
NRTL param	b cy	enzene (1) + clohexane (2)	cyclo 1-p	ohexane (1) + propanol (2)	b 1	enzene (1) + -propanol (2)	benzene (1) + cyclohexane (2) + 1-propanol (3			
				323.	15 K					
$g_{12} - g_{22}{}^b$		166.1437		no ternary						
$g_{21} - g_{11}^{b}$		-14.1638		340.8796		230.9265	parameters			
α_{12}		0.3		0.53		0.59				
				333.	15 K					
$g_{12} - g_{22}{}^b$		97.8224		724.0679		513.2185		no ternary		
$g_{21} - g_{11}{}^b$		37.6067		339.5263		217.1249		parameters		
α_{12}		0.3		0.53		0.59				
<i>T</i> /K	$\Delta P / \%$	$100\Delta y_1$	$\Delta P / \%$	$100\Delta y_1$	$\Delta P / \%$	$100\Delta y_1$	ΔΡ/%	$100\Delta y_1$	$100\Delta y_2$	
323.15	0.1	0.1	0.8	0.6	0.7	0.3	0.4	0.3	0.4	
333.15	0.1	0.1	0.5	0.4	0.2	0.2	0.4	0.3	0.4	

^{*a*} $\Delta y_i = \sum_k |y_{i,\text{exptl}} - y_{i,\text{calcd}}|_k/N, \Delta P = 100 \sum_k (|(P_{\text{exptl}} - P_{\text{calcd}})/P_{\text{exptl}}|_k/N)$. ^{*b*} K, N = number of data points.

Figure 4. Vapor-liquid equilibrium tie lines (tails of arrows represent liquid-phase mole fractions x_1 and x_2 , and heads of arrows represent vapor-phase mole fractions y_1 and y_2) for benzene (1) + cyclohexane (2) + 1-propanol (3) at 333.15 K: (-) this work; (- - -) NRTL equation; (\bullet) azeotropic point.

Figure 5. Azeotropic pressure—liquid composition diagram for the binary systems. (a) Benzene (1) + cyclohexane (2): (○) Storonkin and Morachevsky (1957); (□) Morachevsky and Zharov (1963); (▼) Boublik (1963); (▲) Darmois and Darmois (1964); (△) Donald and Ridgway (1958). (b) Cyclohexane (1) + 1-propanol (2): (○) Storonkin and Morachevsky (1957); (□) Brzostowski and Warycha (1963); (▲) Svoboda et al. (1977); (◇) Morachevsky and Ch'eng (1961). (c) Benzene (1) + 1-propanol (2): (○) Storonkin and Morachevsky (1957); (♥) Fu and Lu (1966); (▲) Tojo et al. (1973); (△) Brown and Smith (1959); (▽) Morachevsky and Ch'eng (1961); (□) Young and Fortey (1902). (a), (b), (c): (●) this work.

Correlation and Prediction

The activity coefficients of the binary systems were correlated using the NRTL equation (Renon and Prausnitz, 1968) at each of the equilibrium temperatures. Table 8

Figure 6. Azeotropic pressure—liquid composition diagram for benzene (1) + cyclohexane (2) + 1-propanol (3): (\bullet) this work; (\bigcirc) Storonkin et al. (1957); (\checkmark) Arce et al. (1986).

lists the NRTL parameters $g_{12} - g_{22}$, $g_{21} - g_{11}$, and α_{12} of the binary systems and the results. In the table, ΔP is the average absolute percent deviation in total pressure and Δy_i is the average absolute deviation in vapor phase mole fraction of component *i*. In Figures 1 and 2, the correlated results are shown by the solid lines.

The VLE of the ternary system of benzene + cyclohexane + 1-propanol was predicted using the binary NRTL parameters in Table 8. The results are summarized in Table 8 and also illustrated by the broken arrows in Figures 3 and 4. The NRTL equation provides good predictions for the ternary system at both temperatures.

Literature Cited

- Arce, A.; Blanco, A.; Antorrena, G. Liquid-Vapor Equilibrium. I. Benzene-n-Propanol System at 50 °C. Acta Cient. Compostelana 1977, 14, 145–158.
- Arce, A.; Blanco, A.; Tojo, J. Vapor-Liquid Equilibrium of the System Benzene + Cyclohexane + 1-Propanol at 760 mmHg. *Fluid Phase Equilib.* **1986**, *26*, 69–81.
- Boublik, T. An Estimate of Limiting Values of Relative Volatility with Help of the Theorem of Corresponding States. II. Binary Systems of Tetrachloromethane, Benzene and Cyclohexane. *Collect. Czech. Chem. Commun.* **1963**, *28*, 1771–1779.
- Bridgeman, O. C.; Aldrich, E. W. Vapor Pressure Tables for Water. J. Heat Transfer 1964, 86, 279–286.
- Brown, I.; Smith, F. Liquid-Vapor Equilibriums. IX. The Systems Propanol + Benzene and Butanol + Benzene at 45°. *Aust. J. Chem.* **1959**, *12*, 407–412.
- Brzostowski, W.; Warycha, S. Thermodynamics of cyclohexane propanol mixtures. Vapor Pressures and Activity Coefficients. Bull. Acad. Pol. Sci., Ser. Sci. Chim. 1963, 11, 539–544.
- Darmois, R.; Darmois, J. Liquid-Vapor Benzene Cyclohexane equilibrium. J. Chim. Phys. 1964, 61, 830–835.
- Donald, M. B.; Ridgway, K. The Binary Systems Benzene Ethyl Methyl Ketone and Benzene – Cyclohexane. J. Appl. Chem. 1958, 8, 403–407.
- Fu, S. J.; Lu, B. C.-Y. Binary Vapor-Liquid Equilibriums. J. Appl. Chem. 1966, 16, 324–326.

- Hiaki, T.; Tochigi, K.; Kojima, K. Measurement of Vapor-Liquid Equilibria and Determination of Azeotropic Point. *Fluid Phase Equilib.* **1986**, *26*, 83–102.
- Kojima, K.; Moon, H. M.; Ochi, K. Thermodynamic Consistency Test of Vapor-Liquid Equilibrium Data -Methanol~Water, Benzene~ Cyclohexane, Ethyl methyl ketone~Water-. *Fluid Phase Equilib.* **1990**, *56*, 269–284.
- Kurihara, K.; Minoura, T.; Takeda, K.; Kojima, K. Isothermal Vapor-Liquid Equilibria for Methanol + Ethanol + Water, Methanol + Water, and Ethanol + Water. J. Chem. Eng. Data 1995, 40, 679– 684.
- Morachevsky, A. G.; Ch'eng, C. T. Vapor-Liquid Equilibrium in the System Benzene – Cyclohexane – Propyl alcohol and Thermodynamic Checking of the Data. *Zh. Fiz. Khim.* **1961**, *35*, 2335– 2340.
- Morachevsky, A. G.; Zharov, V. T. Liquid-Vapor Equilibriums in the Ternary System Benzene-Cyclohexane-Ethyl alcohol. *Zh. Prikl. Khim.* **1963**, *36*, 2771–2773.
- Renon, H.; Prausnitz, J. M. Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. *AIChE J.* **1968**, *14*, 135–144.
- Riddick, J. A.; Bunger, W.; Sakano, T. K. Organic Solvents Physical Properties and Methods of Purification, 4th ed.; John Wiley & Sons: New York, 1986.
- Spencer, C. F.; Adler, S. B. A Critical Review of Equations for Predicting Saturated Liquid Density. J. Chem. Eng. Data 1978, 23, 82-89.
- Storonkin, A. V.; Morachevsky, A. G. The Relation between the Temperature, Pressure, and Composition Change and the Composition of Binary Azeotropic Mixtures. *Zh. Fiz. Khim.* **1957**, *31*, 42– 48.

- Storonkin, A. V.; Morachevsky, A. G.; Kudryavtseva, L. S. Effects of Temperature and Pressure on the Composition of Ternary Azeotropes. Zh. Fiz. Khim. 1957, 31, 395-402.
- Svoboda, V.; Vonkova, J.; Holub, R.; Pick, J. Enthalpy Data of Liquids. Part X. Heats of Vaporization of Binary Azeoropic Mixtures Containing Aliphatic alcohols and Hydrocarbons. *Collect. Czech. Chem. Commun.* **1977**, *42*, 2607–2614.
- Tojo, G.; Bao, M.; Arce, A. Liquid-Vapor Equilibrium XV. Benzene Propanol and Benzene – Isopropanol Binary Systems at 760 mm mercury. An. Quim. 1973, 69, 1177–1185.
- Tsonopoulos, C. An Empirical Correlation of Second Virial Coefficients. *AIChE J.* **1974**, *20*, 263–272.
- Udovenko, V. V.; Mazanko, T. F. Liquid-Vapor Equilibrium in Propyl alcohol – Water and Propyl alcohol – Benzene Systems. *Izv. Vyssh. Ucheb. Zaved. Khim. Khim. Tekhnol.* **1972**, *15*, 1654–1658.
- Waelbroeck, F. G. Virial Coefficients of Benzene Cyclohexane Mixtures, and Theories of Liquid Solutions. J. Chem. Phys. 1955, 23, 749–750.
- Young, S.; Fortey, E. C. The Properties of Mixtures of the Lower Alcohols with Benzene and Benzene and Water. *J. Chem. Soc.* **1902**, *81*, 739–752.

Received for review July 22, 1996. Accepted October 14, 1996.[⊗]

JE9602475

[®] Abstract published in Advance ACS Abstracts, December 1, 1996.